ZnO Nanowires and Their Application for Solar Cells

نویسندگان

  • Qiang Peng
  • Yuancheng Qin
چکیده

Nanowires (NW) are defined here as metallic or semiconducting particles having a high aspect ratio, with cross-sectional diameters « 1 ┤m, and lengths as long as tens of microns. Well-aligned one-dimensional nanowire arrays have been widely investigated as photoelectrodes for solar energy conversion because they provide direct electrical pathways ensuring the rapid collection of carriers generated throughout the device (Tang et al., 2008), as well as affording large junction areas and low reflectance owing to light scattering and trapping (Muskens et al., 2008). Solar energy conversion is a highly attractive process for clean and renewable power for the future. Excitonic solar cells (SCs), including organic and dye-sensitized solar cells (DSSC), appear to have significant potential as a low cost alternative to conventional inorganic photovoltaic (PV) devices. The synthesis and application of nanostructures in solar cells have attracted much attention. Metal oxide nanowire (NW) arrays with large surface area and short diffusion length for minority carriers represent a new class of photoelectrode materials that hold great promise for photoelectrochemical (PEC) hydrogen generation applications. Up to now, various metal oxide nanostructures such as TiO2, ZnO, Fe2O3, ZrO2, Nb2O5, Al2O3, and CeO2 have been successfully employed as photoelectrodes in SCs. Among the above-mentioned metal oxide nanostructures, the study of TiO2 and ZnO is of particular interest due to the fact that they are the best candidates as photoelectrode used in SCs. However, the advantage offered by the increased surface area of the nanoparticle film is compromised by the effectiveness of charge collection by the electrode. For DSSCs, the traditional nanoparticle film was replaced by a dense array of oriented, crystalline nanostructures to obtain faster electron transport for improving solar cell efficiency. A typical high-efficiency DSSC (Grätzel, 2009) consists of a TiO2 nanocrystal thin film that has a large surface area covered by a monolayer of dye molecules to harvest sunlight. Comparedwith TiO2, ZnO shows higher electron mobility with similar bandgap and conduction band energies. ZnO is a direct wide bandgap semiconductor (Eg = 3.4 eV) with large exciton binding energy (~60 meV), suggesting that it is a promising candidate for stable room temperature luminescent and lasing devices. Therefore, ZnO nanowires is an alternative candidate for high efficient SCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and photovoltaic properties of ZnO nanowire for dye-sensitized solar cells

Aligned ZnO nanowires with different lengths (1 to approximately 4 μm) have been deposited on indium titanium oxide-coated glass substrates by using the solution phase deposition method for application as a work electrode in dye-sensitized solar cells (DSSC). From the results, the increases in length of zinc oxide (ZnO) nanowires can increase adsorption of the N3 dye through ZnO nanowires to im...

متن کامل

Efficiency Investigation of Dye-Sensitized Solar Cells Based on the Zinc Oxide Nanowires

In this paper, we synthesized ZnO nanowires in dye sensitized solar cells. The nanowires have been fabricated using fast-microwave-hydrothermal process.We verify the effects of different lengths of ZnO nanowires on efficiency and absorptionofdye sensitized solar cells. J–V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the shortcircuit current de...

متن کامل

NANO EXPRESS Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2 Buffer Layers in Dye-Sensitized Solar Cells

This paper reports the effects of the seed layers prepared by spin-coating and dip-coating methods on the morphology and density of ZnO nanowire arrays, thus on the performance of ZnO nanowire-based dye-sensitized solar cells (DSSCs). The nanowire films with the thick ZnO buffer layer (*0.8–1 lm thick) can improve the open circuit voltage of the DSSCs through suppressing carrier recombination, ...

متن کامل

Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible Perovskite-Based Solar Cells

Hybrid organic-inorganic perovskite has proved to be a superior material for photovoltaic solar cells. In this work we investigate the parameters influencing the growth of ZnO nanowires (NWs) for use as an efficient low temperature photoanode in perovskite-based solar cells. The structure of the solar cell is FTO (SnO₂:F)-glass (or PET-ITO (In₂O₃·(SnO₂) (ITO)) on, polyethylene terephthalate (PE...

متن کامل

Photoconductivity in VO2–ZnO Inter-Nanowire Junction and Nanonetwork Device

We report electrical and optoelectrical properties of a cross-junction of two semiconducting nanowires. Semiconducting nanowires and their junction play an important role in nanonetwork device. By mechanically manipulating the nanowires, cross-junction nanodevices are fabricated on SiO2/Si substrate using VO2 and ZnO nanowires. These junctions are formed across prepatterned two-probe Au electro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012